Operational Amplifiers

Experiment Questions

- 1. analog
- 2. linear
- 3. greater
- 4. 6, –
- 5. –5V

INP	UTS	
V ₁	V 2	V _{OUT} (V)
+4	+1	-5
+2	+3	+5
+1	0	– 5
+4	+4	0
0	+1	+5
+3	+2	- 5

Figure 1-2 b

V _{IN} (V)	V _{OUT} (V)
+0.2	–1
-0.4	+2
0	0
+0.32	-1.6

Figure 1-3 b

V _{IN} (V)	V _{OUT} (V)
+0.3	-0.75
-0.15	+0.38
-2.0	- 5
+0.4	_1

Figure 1-3 c

Inp	ut Volt	age	Output Voltage					
V ₁	V ₂	V ₃	Measured	Calculated				
+1	+1	+1	-3	-3				
+1	-1	-1	+1	+1				
+2	-1	-1	0	0				
-3	-1	+3	+1	+1				
+1	+2	-1	-2	-2				

Figure 1-4 b

Experiment

2

Schmitt Trigger

Procedure Question Answer

1. No. Because the 7476 J-K flip-flop is negative-edge triggered, and reacts only to positive-to-negative-going signals that change abruptly. The rectified sine wave does not change fast enough.

Step 5

Point 1									
$V_{th} - = $.9	_VDC							
$V_{th} += _{-}$	1.7	_VDC							

Table 2-1

Step 7

Waveform	At Point 1	At Point 2	Is the Flip-Flop Toggling (Yes, No)
Circuit (a)			NO
Circuit (b)			YES

Table 2-2

Experiment Questions

- 1. Convert electronic signals to square waves.
 - Perform NAND gate and Inverter logic functions.
- 2. D
- 3. edge
- 4. Low, High
- 5. hysteresis
- 6. Because when sine waves are counted, they must be converted to square waves before being applied to a flip-flop.

Magnitude Comparator

Procedure Question Answer

1. If the high-order bits are equal, then the output state is determined by comparing the low-order bits.

Step 2A

	Inp	ut B			Inp	ut A	Outputs			
В3	B ₂	B ₁	B ₀	A 3	A ₂	A ₁	A ₀	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	1	1	0	0
1	0	0	1	1	0	0	0	1	0	0
0	0	1	1	0	1	0	0	0	0	1
0	0	0	1	1	0	0	1	0	0	1

Table 3-2

Step 3B

Input B				Input A			Expansion Inputs			Outputs			
B_3	B ₂	B ₁	B ₀	A ₃	A ₂	A ₁	A 0	I _A <b< th=""><th>I_A=B</th><th>I_A>B</th><th>A<b< th=""><th>A=B</th><th>A>B</th></b<></th></b<>	I _A =B	I _A >B	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	0	1	1	1	1	1	0	0	0	0	1
0	0	0	1	0	0	0	1	0	0	1	0	0	1
0	1	1	0	0	1	1	0	0	1	0	0	1	0
1	1	1	0	1	1	0	1	0	0	1	1	0	0
0	1	0	1	1	1	1	0	0	1	0	0	0	1

Table 3-4

Experiment Questions

- 1, 1111
- 2. Yes. By connecting a Low to the MSB of inputs A and B, and applying the three binary bits to the remaining inputs.
- 3. $I_A > B = 0$ $I_A = B = 0$ $I_A < B = 1$
- 4. 4
- 5. When A is greater than B, or B is greater than A, the circuit would operate normally. When A is equal to B, however, output A<B would incorrectly go High—instead of output A=B.