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Solution Manual for
A First Course in Abstract Algebra, with Applications

Third Edition
by Joseph J. Rotman

Exercises for Chapter 1

1.1 True or false with reasons.
(i) There is a largest integer in every nonempty set of negative inte-

gers.

Solution. True. If C is a nonempty set of negative integers, then

−C = {−n : n ∈ C}

is a nonempty set of positive integers. If−a is the smallest element
of −C , which exists by the Least Integer Axiom, then −a ≤ −c
for all c ∈ C , so that a ≥ c for all c ∈ C .

(ii) There is a sequence of 13 consecutive natural numbers containing
exactly 2 primes.

Solution. True. The integers 48 through 60 form such a sequence;
only 53 and 59 are primes.

(iii) There are at least two primes in any sequence of 7 consecutive
natural numbers.

Solution. False. The integers 48 through 54 are 7 consecutive
natural numbers, and only 53 is prime.

(iv) Of all the sequences of consecutive natural numbers not containing
2 primes, there is a sequence of shortest length.

Solution. True. The set C consisting of the lengths of such (finite)
sequences is a nonempty subset of the natural numbers.

(v) 79 is a prime.

Solution. True.
√
79 <

√
81 = 9, and 79 is not divisible by 2, 3,

5, or 7.

(vi) There exists a sequence of statements S(1), S(2), . . . with S(2n)
true for all n ≥ 1 and with S(2n − 1) false for every n ≥ 1.

Solution. True. Define S(2n − 1) to be the statement n �= n, and
define S(2n) to be the statement n = n.

(vii) For all n ≥ 0, we have n ≤ Fn , where Fn is the nth Fibonacci
number.
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Solution. True. We have 0 = F0, 1 = F1, 1 = F2, and 2 =
F3. Use the second form of induction with base steps n = 2 and
n = 3 (verifying the inductive step will show why we choose
these numbers). By the inductive hypothesis, n − 2 ≤ Fn−2 and
n− 1 ≤ Fn−1. Hence, 2n− 3 ≤ Fn . But n ≤ 2n−3 for all n ≥ 3,
as desired.

(viii) If m and n are natural numbers, then (mn)! = m!n!.
Solution. False. If m = 2 = n, then (mn)! = 24 and m!n! = 4.

1.2 (i) For any n ≥ 0 and any r �= 1, prove that

1+ r + r2 + r3 + · · · + rn = (1− rn+1)/(1− r).

Solution. We use induction on n ≥ 1. When n = 1, both sides
equal 1+ r . For the inductive step, note that

[1+ r + r2 + r3 + · · · + rn] + rn+1 = (1− rn+1)/(1− r) + rn+1

=
1− rn+1 + (1− r)rn+1

1− r

=
1− rn+2

1− r
.

(ii) Prove that

1+ 2+ 22 + · · · + 2n = 2n+1 − 1.

Solution. This is the special case of the geometric series when
r = 2; hence, the sum is (1− 2n+1)/(1− 2) = 2n+1 − 1. One can
also prove this directly, by induction on n ≥ 0.

1.3 Show, for all n ≥ 1, that 10n leaves remainder 1 after dividing by 9.
Solution. This may be rephrased to say that there is an integer qn with
10n = 9qn +1. If we define q1 = 1, then 10 = q1+1, and so the base step
is true.
For the inductive step, there is an integer qn with

10n+1 = 10× 10n = 10(9qn + 1)

= 90qn + 10 = 9(10qn + 1) + 1.

Define qn+1 = 10qn + 1, which is an integer.

1.4 Prove that if 0 ≤ a ≤ b, then an ≤ bn for all n ≥ 0.
Solution. Base step. a0 = 1 = b0, and so a0 ≤ b0.
Inductive step. The inductive hypothesis is

an ≤ bn.
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Since a is positive, Theorem 1.4(i) gives an+1 = aan ≤ abn; since b is
positive, Theorem 1.4(i) now gives abn ≤ bbn = bn+1.

1.5 Prove that 12 + 22 + · · · + n2 = 1
6n(n + 1)(2n + 1) = 1

3n
3 + 1

2n
2 + 1

6n.
Solution. The proof is by induction on n ≥ 1. When n = 1, the left side is
1 and the right side is 13 + 1

2 + 1
6 = 1.

For the inductive step,

[12 + 22 + · · · + n2] + (n + 1)2 = 1
3n
3 + 1

2n
2 + 1

6n + (n + 1)2

= 1
3 (n + 1)3 + 1

2 (n + 1)2 + 1
6 (n + 1),

after some elementary algebraic manipulation.
1.6 Prove that 13 + 23 + · · · + n3 = 1

4n
4 + 1

2n
3 + 1

4n
2.

Solution. Base step: When n = 1, both sides equal 1.
Inductive step:

[13 + 23 + · · · + n3] + (n + 1)3 = 1
4n
4 + 1

2n
3 + 1

4n
2 + (n + 1)3.

Expanding gives
1
4n
4 + 3

2n
3 + 13

4 n
2 + 3n + 1,

which is
1
4 (n + 1)4 + 1

2 (n + 1)3 + 1
4(n + 1)2.

1.7 Prove that 14 + 24 + · · · + n4 = 1
5n
5 + 1

2n
4 + 1

3n
3 − 1

30n.
Solution. The proof is by induction on n ≥ 1. If n − 1, then the left side is
1, while the right side is 15 + 1

2 + 1
3 − 1

30 = 1 as well.
For the inductive step,
+
14 + 24 + · · · + n4

,
+ (n + 1)4 = 1

5n
5 + 1

2n
4 + 1

3n
3 − 1

30n + (n + 1)4.

It is now straightforward to check that this last expression is equal to
1
5 (n + 1)5 + 1

2 (n + 1)4 + 1
3 (n + 1)3 − 1

30(n + 1).

1.8 Find a formula for 1+3+5+· · ·+(2n−1), and use mathematical induction
to prove that your formula is correct.
Solution. We prove by induction on n ≥ 1 that the sum is n2.
Base Step. When n = 1, we interpret the left side to mean 1. Of course,

12 = 1, and so the base step is true.
Inductive Step.

1+ 3+ 5+ · · · + (2n − 1) + (2n + 1)

= 1+ 3+ 5+ · · · + (2n − 1)] + (2n + 1)

= n2 + 2n + 1

= (n + 1)2.


